Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cells ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38667286

RESUMEN

Ischemic stroke is a major cerebrovascular disease with high morbidity and mortality rates; however, effective treatments for ischemic stroke-related neurological dysfunction have yet to be developed. In this study, we generated neural progenitor cells from human leukocyte antigen major loci gene-homozygous-induced pluripotent stem cells (hiPSC-NPCs) and evaluated their therapeutic effects against ischemic stroke. hiPSC-NPCs were intracerebrally transplanted into rat ischemic brains produced by transient middle cerebral artery occlusion at either the subacute or acute stage, and their in vivo survival, differentiation, and efficacy for functional improvement in neurological dysfunction were evaluated. hiPSC-NPCs were histologically identified in host brain tissues and showed neuronal differentiation into vGLUT-positive glutamatergic neurons, extended neurites into both the ipsilateral infarct and contralateral healthy hemispheres, and synaptic structures formed 12 weeks after both acute and subacute stage transplantation. They also improved neurological function when transplanted at the subacute stage with γ-secretase inhibitor pretreatment. However, their effects were modest and not significant and showed a possible risk of cells remaining in their undifferentiated and immature status in acute-stage transplantation. These results suggest that hiPSC-NPCs show cell replacement effects in ischemic stroke-damaged neural tissues, but their efficacy is insufficient for neurological functional improvement after acute or subacute transplantation. Further optimization of cell preparation methods and the timing of transplantation is required to balance the efficacy and safety of hiPSC-NPC transplantation.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Accidente Cerebrovascular Isquémico , Células-Madre Neurales , Sinapsis , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Humanos , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Células-Madre Neurales/citología , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/terapia , Ratas , Sinapsis/metabolismo , Masculino , Neuritas/metabolismo , Encéfalo/patología , Isquemia Encefálica/terapia , Isquemia Encefálica/patología , Neuronas/metabolismo , Neuronas/patología , Ratas Sprague-Dawley , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/patología
2.
Stem Cell Res ; 69: 103122, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37209469

RESUMEN

Infantile neuroaxonal dystrophy (INAD) is a rare neurodegenerative disease caused mainly by homozygous or compound heterozygous mutations in the PLA2G6 gene. We generated a human induced pluripotent stem cell (hiPSC) line (ONHi001-A) using fibroblasts derived from a patient with INAD. The patient exhibited c.517C > T (p.Q173X) and c.1634A > G (p.K545R) compound heterozygous mutations in the PLA2G6 gene. This hiPSC line may be useful for studying the pathogenic mechanism underlying INAD.


Asunto(s)
Células Madre Pluripotentes Inducidas , Distrofias Neuroaxonales , Enfermedades Neurodegenerativas , Humanos , Células Madre Pluripotentes Inducidas/patología , Enfermedades Neurodegenerativas/genética , Mutación/genética , Homocigoto , Distrofias Neuroaxonales/genética , Distrofias Neuroaxonales/patología , Fosfolipasas A2 Grupo VI/genética
4.
Neurochem Res ; 47(9): 2668-2682, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35347634

RESUMEN

Mammalian axon growth has mechanistic similarities with axon regeneration. The growth cone is an important structure that is involved in both processes, and GAP-43 (growth associated protein-43 kDa) is believed to be the classical molecular marker. Previously, we used growth cone phosphoproteomics to demonstrate that S96 and T172 of GAP-43 in rodents are highly phosphorylated sites that are phosphorylated by c-jun N-terminal protein kinase (JNK). We also revealed that phosphorylated (p)S96 and pT172 antibodies recognize growing axons in the developing brain and regenerating axons in adult peripheral nerves. In rodents, S142 is another putative JNK-dependent phosphorylation site that is modified at a lower frequency than S96 and T172. Here, we characterized this site using a pS142-specific antibody. We confirmed that pS142 was detected by co-expressing mouse GAP-43 and JNK1. pS142 antibody labeled growth cones and growing axons in developing mouse neurons. pS142 was sustained until at least nine weeks after birth in mouse brains. The pS142 antibody could detect regenerating axons following sciatic nerve injury in adult mice. Comparison of amino acid sequences indicated that rodent S142 corresponds to human S151, which is predicted to be a substrate of the MAPK family, which includes JNK. Thus, we confirmed that the pS142 antibody recognized human phospho-GAP-43 using activated JNK1, and also that its immunostaining pattern in neurons differentiated from human induced pluripotent cells was similar to those observed in mice. These results indicate that the S142 residue is phosphorylated by JNK1 and that the pS142 antibody is a new candidate molecular marker for axonal growth in both rodents and human.


Asunto(s)
Axones , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Regeneración Nerviosa , Animales , Axones/metabolismo , Proteína GAP-43/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Mamíferos/metabolismo , Ratones , Regeneración Nerviosa/fisiología , Fosforilación , Serina/metabolismo
5.
Mol Brain ; 14(1): 149, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34629097

RESUMEN

The generation of mature synaptic structures using neurons differentiated from human-induced pluripotent stem cells (hiPSC-neurons) is expected to be applied to physiological studies of synapses in human cells and to pathological studies of diseases that cause abnormal synaptic function. Although it has been reported that synapses themselves change from an immature to a mature state as neurons mature, there are few reports that clearly show when and how human stem cell-derived neurons change to mature synaptic structures. This study was designed to elucidate the synapse formation process of hiPSC-neurons. We propagated hiPSC-derived neural progenitor cells (hiPSC-NPCs) that expressed localized markers of the ventral hindbrain as neurospheres by dual SMAD inhibition and then differentiated them into hiPSC-neurons in vitro. After 49 days of in vitro differentiation, hiPSC-neurons significantly expressed pre- and postsynaptic markers at both the transcript and protein levels. However, the expression of postsynaptic markers was lower than in normal human or normal rat brain tissues, and immunostaining analysis showed that it was relatively modest and was lower than that of presynaptic markers and that its localization in synaptic structures was insufficient. Neurophysiological analysis using a microelectrode array also revealed that no synaptic activity was generated on hiPSC-neurons at 49 days of differentiation. Analysis of subtype markers by immunostaining revealed that most hiPSC-neurons expressed vesicular glutamate transporter 2 (VGLUT2). The presence or absence of NGF, which is required for the survival of cholinergic neurons, had no effect on their cell fractionation. These results suggest that during the synaptogenesis of hiPSC-neurons, the formation of presynaptic structures is not the only requirement for the formation of postsynaptic structures and that the mRNA expression of postsynaptic markers does not correlate with the formation of their mature structures. Technically, we also confirmed a certain level of robustness and reproducibility of our neuronal differentiation method in a multicenter setting, which will be helpful for future research. Synapse formation with mature postsynaptic structures will remain an interesting issue for stem cell-derived neurons, and the present method can be used to obtain early and stable quality neuronal cultures from hiPSC-NPCs.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Neurogénesis , Animales , Biomarcadores , Técnicas de Cultivo de Célula/métodos , Línea Celular , Hipocampo/citología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/análisis , Células-Madre Neurales/ultraestructura , Neuronas/química , Neuronas/clasificación , Neuronas/citología , Neuropéptidos/análisis , Terminales Presinápticos/ultraestructura , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Reproducibilidad de los Resultados , Sinapsis/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/análisis , Proteína 2 de Transporte Vesicular de Glutamato/análisis
6.
FEBS Open Bio ; 11(2): 354-366, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33301617

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder caused by the selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Lewy bodies (LBs), another histological hallmark of PD, are observed in patients with familial or sporadic PD. The therapeutic potential of reducing the accumulation of α-synuclein, a major LB component, has been investigated, but it remains unknown whether the formation of LBs results in the loss of DA neurons. PARK4 patients exhibit multiplication of the α-synuclein gene (SNCA) without any pathological mutations, but their symptoms develop relatively early. Therefore, study of PARK4 might help elucidate the mechanism of α-synuclein aggregation. In this study, we investigated the dynamics of α-synuclein during the early stage of immature DA neurons, which were differentiated from human-induced pluripotent stem cells (hiPSCs) derived from either a PARK4 patient with SNCA triplication or a healthy donor. We observed increased α-synuclein accumulation in PARK4 hiPSC-derived DA neurons relative to those derived from healthy donor hiPSCs. Interestingly, α-synuclein accumulation disappeared over time in the PARK4 patient-derived DA neurons. Moreover, an SNCA-specific antisense oligonucleotide could reduce α-synuclein levels during the accumulation stage. These observations may help reveal the mechanisms that regulate α-synuclein levels, which may consequently be useful in the development of new therapies for patients with sporadic or familial PD.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Parkinson/patología , alfa-Sinucleína/deficiencia , Diferenciación Celular , Células Cultivadas , Variaciones en el Número de Copia de ADN , Neuronas Dopaminérgicas/efectos de los fármacos , Duplicación de Gen , Voluntarios Sanos , Humanos , Células Madre Pluripotentes Inducidas , Enfermedad por Cuerpos de Lewy/genética , Enfermedad de Parkinson/genética , Cultivo Primario de Células , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
7.
J Pharmacol Sci ; 140(4): 331-336, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31501056

RESUMEN

Various chemicals, including pharmaceuticals, can induce acute or delayed neurotoxicity in humans. Because isolation of human primary neurons is extremely difficult, toxicity tests for these agents have been performed using in vivo or in vitro models. Human induced pluripotent stem cells (hiPSCs) can be used to establish hiPSC-derived neural stem/progenitor cells (hiPSC-NSPCs), which can then be used to obtain hiPSC-neurons. In this study, we differentiated hiPSC-NSPCs into neurons and evaluated the susceptibility of hiPSC-neurons and parental hiPSC-NSPCs to anticancer drugs in vitro by ATP assay and immunocytostaining. The hiPSC-neurons were more resistant to anticancer drugs than the parental hiPSC-NSPCs. In the toxicity tests, high-dose cisplatin reduced the levels of ELAVL3/4, a neuronal marker, in the hiPSC-neurons. These results suggest that our methodology is potentially applicable for efficient determination of the toxicity of any drug to hiPSC-neurons.


Asunto(s)
Antineoplásicos/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Células-Madre Neurales
8.
PeerJ ; 6: e4187, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29312819

RESUMEN

Since the development of human-induced pluripotent stem cells (hiPSCs), various types of hiPSC-derived cells have been established for regenerative medicine and drug development. Neural stem/progenitor cells (NSPCs) derived from hiPSCs (hiPSC-NSPCs) have shown benefits for regenerative therapy of the central nervous system. However, owing to their intrinsic proliferative potential, therapies using transplanted hiPSC-NSPCs carry an inherent risk of undesired growth in vivo. Therefore, it is important to find cytotoxic drugs that can specifically target overproliferative transplanted hiPSC-NSPCs without damaging the intrinsic in vivo stem-cell system. Here, we examined the chemosensitivity of hiPSC-NSPCs and human neural tissue-derived NSPCs (hN-NSPCs) to the general anticancer drugs cisplatin, etoposide, mercaptopurine, and methotrexate. A time-course analysis of neurospheres in a microsphere array identified cisplatin and etoposide as fast-acting drugs, and mercaptopurine and methotrexate as slow-acting drugs. Notably, the slow-acting drugs were eventually cytotoxic to hiPSC-NSPCs but not to hN-NSPCs, a phenomenon not evident in the conventional endpoint assay on day 2 of treatment. Our results indicate that slow-acting drugs can distinguish hiPSC-NSPCs from hN-NSPCs and may provide an effective backup safety measure in stem-cell transplant therapies.

9.
Anticancer Res ; 37(7): 3921-3932, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28668896

RESUMEN

In this clinical study, we investigated the safety and clinical usefulness of systemic adoptive immunotherapy using autologous lymphokine-activated αß T-cells (αß T-cells), combined with standard therapies, in patients with malignant brain tumors. Twenty-three patients with different malignant brain tumors, consisting of 14 treated with temozolomide (TMZ group) and 9 treated without temozolomide (non-TMZ group), received systemic intravenous injections of αß T-cells (mean=10.4 injections/patient for the TMZ group, and 4.78 for the non-TMZ group). No significant adverse effects associated with the αß T-cell injection were observed, and the total lymphocyte count (TLC) improved significantly in the TMZ group after five injections. Furthermore, CD8-positive or T-cell receptor V gamma -positive cells were increased with TLC in three patients with glioblastoma multiforme. These findings suggest that systemic αß T-cell immunotherapy is well tolerated, and may help restore an impaired and imbalanced T-cell immune status, and temozolomide- and/or radiotherapy-induced lymphopenia. Future prospective study is needed to clarify the clinical merits of this immunotherapy.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Dacarbazina/análogos & derivados , Glioma/tratamiento farmacológico , Linfopenia/prevención & control , Subgrupos de Linfocitos T/trasplante , Administración Intravenosa , Adolescente , Adulto , Anciano , Neoplasias Encefálicas/inmunología , Línea Celular Tumoral , Niño , Dacarbazina/efectos adversos , Dacarbazina/uso terapéutico , Femenino , Glioma/inmunología , Humanos , Inmunoterapia Adoptiva , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Temozolomida , Trasplante Autólogo , Resultado del Tratamiento , Adulto Joven
10.
Mol Brain ; 9(1): 85, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27642008

RESUMEN

The risk of tumorigenicity is a hurdle for regenerative medicine using induced pluripotent stem cells (iPSCs). Although teratoma formation is readily distinguishable, the malignant transformation of iPSC derivatives has not been clearly defined due to insufficient analysis of histology and phenotype. In the present study, we evaluated the histology of neural stem/progenitor cells (NSPCs) generated from integration-free human peripheral blood mononuclear cell (PBMC)-derived iPSCs (iPSC-NSPCs) following transplantation into central nervous system (CNS) of immunodeficient mice. We found that transplanted iPSC-NSPCs produced differentiation patterns resembling those in embryonic CNS development, and that the microenvironment of the final site of migration affected their maturational stage. Genomic instability of iPSCs correlated with increased proliferation of transplants, although no carcinogenesis was evident. The histological classifications presented here may provide cues for addressing potential safety issues confronting regenerative medicine involving iPSCs.


Asunto(s)
Enfermedades del Sistema Nervioso Central/terapia , Células Madre Pluripotentes Inducidas/patología , Células-Madre Neurales/patología , Trasplante de Células Madre/efectos adversos , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Enfermedades del Sistema Nervioso Central/patología , Inestabilidad Genómica , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Cariotipo , Ratones SCID , Modelos Biológicos , Células-Madre Neurales/trasplante , Sistema de Registros
11.
Stem Cells Int ; 2016: 7235757, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27212953

RESUMEN

Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

12.
PLoS One ; 8(1): e55226, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23383118

RESUMEN

Human ES cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are usually generated and maintained on living feeder cells like mouse embryonic fibroblasts or on a cell-free substrate like Matrigel. For clinical applications, a quality-controlled, xenobiotic-free culture system is required to minimize risks from contaminating animal-derived pathogens and immunogens. We previously reported that the pericellular matrix of decidua-derived mesenchymal cells (PCM-DM) is an ideal human-derived substrate on which to maintain hiPSCs/hESCs. In this study, we examined whether PCM-DM could be used for the generation and long-term stable maintenance of hiPSCs. Decidua-derived mesenchymal cells (DMCs) were reprogrammed by the retroviral transduction of four factors (OCT4, SOX2, KLF4, c-MYC) and cultured on PCM-DM. The established hiPSC clones expressed alkaline phosphatase, hESC-specific genes and cell-surface markers, and differentiated into three germ layers in vitro and in vivo. At over 20 passages, the hiPSCs cultured on PCM-DM held the same cellular properties with genome integrity as those at early passages. Global gene expression analysis showed that the GDF3, FGF4, UTF1, and XIST expression levels varied during culture, and GATA6 was highly expressed under our culture conditions; however, these gene expressions did not affect the cells' pluripotency. PCM-DM can be conveniently prepared from DMCs, which have a high proliferative potential. Our findings indicate that PCM-DM is a versatile and practical human-derived substrate that can be used for the feeder-cell-free generation and long-term stable maintenance of hiPSCs.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Decidua/citología , Células Madre Embrionarias/citología , Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Pluripotentes/citología , Análisis de Varianza , Diferenciación Celular/fisiología , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Cariotipificación , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Análisis por Micromatrices , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas Proto-Oncogénicas c-myc/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/genética , Análisis de Secuencia de ADN , Estadísticas no Paramétricas , Transducción Genética
13.
Cell Med ; 4(3): 125-47, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26858858

RESUMEN

Placental tissue is a biomaterial with remarkable potential for use in regenerative medicine. It has a three-layer structure derived from the fetus (amnion and chorion) and the mother (decidua), and it contains huge numbers of cells. Moreover, placental tissue can be collected without any physical danger to the donor and can be matched with a variety of HLA types. The decidua-derived mesenchymal cells (DMCs) are highly proliferative fibroblast-like cells that express a similar pattern of CD antigens as bone marrow-derived mesenchymal cells (BM-MSCs). Here we demonstrated that induced pluripotent stem (iPS) cells could be efficiently generated from DMCs by retroviral transfer of reprogramming factor genes. DMC-hiPS cells showed equivalent characteristics to human embryonic stem cells (hESCs) in colony morphology, global gene expression profile (including human pluripotent stem cell markers), DNA methylation status of the OCT3/4 and NANOG promoters, and ability to differentiate into components of the three germ layers in vitro and in vivo. The RNA expression of XIST and the methylation status of its promoter region suggested that DMC-iPSCs, when maintained undifferentiated and pluripotent, had three distinct states: (1) complete X-chromosome reactivation, (2) one inactive X-chromosome, or (3) an epigenetic aberration. Because DMCs are derived from the maternal portion of the placenta, they can be collected with the full consent of the adult donor and have considerable ethical advantages for cell banking and the subsequent generation of human iPS cells for regenerative applications.

14.
Neuroreport ; 24(2): 84-90, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23238165

RESUMEN

In vitro, human neural stem cells can be selectively expanded from fetal or adult neural tissues as neurospheres consisting of immature neural progenitor cells. Access to human neural tissues is limited, making it difficult to propagate and use primary neural stem or progenitor cells (NSPCs) from human neural tissues (hN-NSPCs). It was recently demonstrated that hN-NSPCs can be differentiated from either human embryonic stem cells (hESC-NSPCs) or human-induced pluripotent stem cells (hiPSC-NSPCs), and that hESC-NSPCs and hiPSC-NSPCs are adaptable, powerful substitutes for hN-NSPCs in both regenerative medicine and pharmacological or neurotoxicological assays. We here describe a new protocol to generate neurospheres consisting of hiPSC-NSPCs using microsphere arrays, the surface of which is modified with polyethylene glycol to render it nonadhesive to cells. Primary hiPSCs treated with noggin formed neurospheres on the microsphere arrays and could be stably propagated as free-floating spheroids. The hiPSC-NSPCs proliferating in these neurospheres were almost identical in phenotype to hN-NSPCs, in both cell-surface marker expression and their ability to differentiate into neuronal cells, although gene expression profiles showed that the hiPSC-NSPCs had higher neural and lower glial gene expression, along with mid-hindbrain-like regional specificity. This convenient propagation protocol can be used to evaluate the neurosphere-forming efficiency of hiPSC clones. This method will support the generation of neurospheres from hESCs and hiPSCs and contribute to the use of hESC-NSPCs and hiPSC-NSPCs in research.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Microesferas , Células-Madre Neurales/citología , Técnicas de Cultivo de Célula/métodos , Línea Celular , Células Madre Embrionarias/metabolismo , Humanos , Neuronas/citología , Medicina Regenerativa/métodos
15.
Photochem Photobiol ; 84(4): 839-44, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18282179

RESUMEN

PpsR is a transcription repressor for the gene cluster encoding photosystem genes in Rhodobacter sphaeroides. Repression activity is accomplished by DNA binding on the promoter regions of the photosystem gene clusters, and depends on both the redox potential and the presence of antirepressor protein AppA. To understand DNA repression regulation by PpsR, we investigated the function of PpsR domains in self-association for DNA binding. We constructed domain-deletion mutants and verified DNA-binding activity and dimer formation. Gel shift assay for measuring the DNA-binding activity of three sequential N-terminal deletion mutants revealed that N-terminal deletions (of minimum 121 residues) caused loss of binding activity. Size-exclusion gel chromatography revealed that deletion mutant which lacks the N-terminal 121-amino acid deletion mutant to exist as a dimer, although it was less stable than the intact PpsR. The mutants lacking the adjacent regions, Q-linker region and the first Per-Ant-Sim domain, did not form dimers, suggesting the involvement of the N-terminal region in dimer formation. This region is thus considered to be a functional domain in self-association, although not yet identified as a structural domain. Circular dichroism spectrum of the N-terminal region fragment exhibited a alpha/beta structure. We conclude that this region is a structural and functional domain, contributing to PpsR repression through dimer stabilization.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Rhodobacter sphaeroides/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Dimerización , Reacción en Cadena de la Polimerasa , Proteínas Represoras/metabolismo , Rhodobacter sphaeroides/genética , Eliminación de Secuencia , Espectrofotometría Ultravioleta , Factores de Transcripción/química , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...